Получи случайную криптовалюту за регистрацию!

Physical Brainstorming

Логотип телеграм канала @quantumphys — Physical Brainstorming P
Логотип телеграм канала @quantumphys — Physical Brainstorming
Адрес канала: @quantumphys
Категории: Образование
Язык: Русский
Количество подписчиков: 1.07K
Описание канала:

Новости, интересные статьи и важные объявления на тему квантовой механики.
———
По вопросам обращаться к:
@ArtDoctor / @Culvirina

Рейтинги и Отзывы

1.00

2 отзыва

Оценить канал quantumphys и оставить отзыв — могут только зарегестрированные пользователи. Все отзывы проходят модерацию.

5 звезд

0

4 звезд

0

3 звезд

0

2 звезд

0

1 звезд

2


Последние сообщения 20

2021-05-03 18:03:59
335 viewsArtem Gogol, 15:03
Открыть/Комментировать
2021-05-03 18:03:57 «Кошачьи» кубиты сделали квантовый компьютер более отказоустойчивым

Физики из компании Amazon представили схему отказоустойчивого квантового компьютера, в котором реализован новый подход к квантовой коррекции ошибок. В основе архитектуры этого компьютера лежат «кошачьи» кубиты (находящиеся в квантовом состоянии кота Шредингера), обладающие высокой устойчивостью к переворачиванию битов. Препринт статьи опубликован на arXiv.org.

Создание квантового компьютера — это непростая задача. Проблема заключается в том, что квантовая система неизбежно контактирует с окружающей средой. При этом информация о квантовой системе, изначально закодированная в устройстве, просачивается в окружающую среду. Это явление называется декогеренцией. После декогеренции уже нельзя получить доступ ко всей информации об устройстве, наблюдая только за ним. Это значит, что происходит ошибка и часть информации теряется. Для того, чтобы построить надежный квантовый компьютер, нужно научиться сводить к минимуму такие ошибки.

Один из подходов — уменьшение количества ошибок логического элемента с использованием избыточного числа кубитов, или активная квантовая коррекция ошибок. Этот метод основан на естественном предположении, что если сравнить несколько копий одного и того же состояния и они будут отличаться между собой, то произошла ошибка, а в обратном случае все в порядке. Несмотря на некоторые трудности (в квантовой механике невозможно просто скопировать кубит), такой подход реализуем на практике. Но у него есть недостаток — необходимость использования дополнительных кубитов заметно увеличивает их общее количество, что делает задачу более сложной с точки зрения технической реализации.

Пассивная, или автономная, квантовая коррекция ошибок — это противоположный подход. Для его осуществления разрабатывают физические вычислительные системы, которые имеют внутреннюю устойчивость к ошибкам.

Группа ученых из Amazon под руководством Фернандо Брандао (Fernando Brandão) разработала новую схему квантового компьютера, устойчивого к ошибкам. Они использовали «кошачьи» кубиты, или кубиты в квантовом состоянии кота Шредингера (cat state), то есть в суперпозиции когерентных состояний с противоположными фазами. Идея заключается в том, что после стабилизации «кошачьего» кубита ошибки с переворотом битов становятся чрезвычайно редкими, а ошибки переворота фазы — более частыми. А для того, чтобы защититься от ошибок переворота фазы, можно использовать активную коррекцию ошибок.

Для выполнения логических операций на кубитах используются квантовые вентили. Ключевой момент состоит в том, что эти вентили не только универсальны, но и не приводят к дополнительным переворотам битов. «Кошачьи» кубиты, между которыми осуществляется логическая операция, должны быть подключены у единому подпитывающему резервуару. Авторы исследования обнаружили, что такое подключение приводит к коррелированным ошибкам между ними. Если подключить больше четырех кубитов к одному резервуару, то эти помехи не будут скомпенсированы активной коррекцией ошибок. Это число и определило компоновку и возможности подключения архитектуры.

Идея использовать вместе состояния кота Шредингера и активную коррекцию ошибок не нова. Отличие этого исследования от предыдущих заключается в том, что ученые выполнили полное моделирование шума, включая углубленное исследование редких процессов переворота битов. Использование архитектуры, предложенной в работе, и активной коррекции ошибок, позволяет достичь логической ошибки 2,7×10^-8, используя всего 9 кубитов кода данных — это улучшение более чем на пять порядков по сравнению с полностью незащищенными кубитами. Согласно оценке ученых, такая схема («кошачьи» кубиты и коды повторения) с чуть более чем двумя тысячами сверхпроводящих компонентов, используемых для стабилизации, могла бы создать сотню логических кубитов, способных надежно выполнить тысячу вентилей Тоффоли.

#QPNews Взято отсюда
314 viewsArtem Gogol, 15:03
Открыть/Комментировать
2021-05-01 19:16:08
304 viewsArtem Gogol, 16:16
Открыть/Комментировать
2021-05-01 19:16:07 Физики зафиксировали тысячи молекул в одном квантовом состоянии

Автором нового исследования, опубликованное в журнале Nature, похоже удалось решить одну из самых важных задач квантовой физики – они продемонстрировали как привести несколько молекул сразу в единое квантовое состояние. Напомню, что когда группа частиц, охлажденных до абсолютного нуля, разделяет единое квантовое состояние и вся группа начинает вести себя так, как если бы это был один атом, физики говорят о конденсате Бозе-Эйнштейна. Этого состояния, безусловно, достичь трудно, но когда это происходит, открывается целый мир новых возможностей. Ученые проделывали это с атомами на протяжении десятилетий, но проделай они то же самое с молекулами, сегодня мы, вероятно, обладали бы разными формами квантовых технологий. Но поскольку молекулы больше атомов и имеют гораздо больше движущихся частей, большинство попыток обуздать их не увенчались успехом. Впрочем, так было до конца апреля этого года – в ходе нового исследования команда физиков охладила атомы цезия, а затем ограничила молекулы таким образом, чтобы они находились на двумерной поверхности и могли двигаться только в двух направлениях. В результате получился набор практически идентичных молекул в едином квантовом состоянии.

Как зафиксировать молекулы в одном квантовом состоянии?
В ходе нового исследования, опубликованного в журнале Nature 28 апреля, команда ученых из Чикагского университета охладила атомы цезия почти до абсолютного нуля – в этом состоянии каждый атом стационарен, а все электроны находятся на нижнем уровне; теоретически это происходит при -273,15 градусах по Цельсию (0 градусов по шкале Кельвина). Это происходило в несколько этапов.

Первым было охлаждение всей системы до 10 нанокельвинов – на волосок выше абсолютного нуля. Затем они упаковали молекулы в ползучее пространство так, чтобы те были прижаты плашмя. «Как правило, молекулы хотят двигаться во всех направлениях, и если позволить им это, то они становятся менее стабильны. Мы ограничили молекулы таким образом, чтобы они находились на двумерной поверхности и могли двигаться только в двух направлениях», – пишут авторы исследования.

В результате получился набор практически идентичных молекул — выстроенных в линию с абсолютно одинаковой ориентацией, одинаковой частотой колебаний и в одном и том же квантовом состоянии. Ученые описали этот молекулярный конденсат как чистый лист новой чертежной бумаги для квантовой инженерии.

«Это абсолютно идеальная отправная точка. Например, если вы хотите создать квантовые системы для хранения информации, вам нужно начать с чистого листа, прежде чем вы сможете отформатировать и сохранить эту информацию», – отметил ведущий автор исследования Чен Чин из Чикагского университета в интервью изданию Sciencealert.

Примечательно, что до сих пор ученым удавалось связать вместе до нескольких тысяч молекул в таком состоянии и они только начинают исследовать его потенциал. Как объясняют авторы научной работы, в традиционном понимании химии мы обычно думаем о том, что несколько атомов и молекул сталкиваются и образуют новую молекулу. Но в квантовом состоянии все молекулы действуют вместе, проявляя коллективное поведение. Это открывает совершенно новый способ изучения того, как молекулы могут взаимодействовать друг с другом, чтобы превратиться в молекулы нового типа.

Результаты работы, как надеются ее авторы, в будущем могут лечь в основу форм квантовых технологий. Помимо прочего, благодаря своей богатой энергетической структуре холодные молекулы могут способствовать прогрессу в квантовой инженерии и квантовой химии. В общем, на лицо все свидетельства того, что в скором времени нас ожидаем много удивительных открытий.

#QPNews Взято отсюда
310 viewsArtem Gogol, 16:16
Открыть/Комментировать
2021-04-28 17:25:14
341 viewsArtem Gogol, 14:25
Открыть/Комментировать
2021-04-28 17:25:12 Доказано существование мнимой части квантовой механики

Международная исследовательская группа выяснила, что мнимую часть квантовой механики можно наблюдать в действии в реальном мире

Эксперимент, проверяющий роль комплексных чисел в квантовой механике, можно представить в виде игры Алисы и Боба с участием ведущего игру мастера. Используя устройство с лазерами и кристаллами, мастер игры связывает два фотона в одно из двух квантовых состояний. Чтобы различать их, приходится использовать комплексные числа. Затем один фотон отправляется Алисе, а другой — Бобу. Каждый из них измеряет свой фотон, а после связывается с другим, чтобы установить любые существующие корреляции.

«Предположим, что результаты измерений Алисы и Боба могут принимать только значения 0 или 1. Алиса видит бессмысленную последовательность нулей и единиц, как и Боб. Однако, если они обмениваются данными, они могут установить связь между соответствующими измерениями. Если мастер игры отправляет им коррелированное состояние, когда один видит результат 0, другой тоже будет видеть 0. Если они получат антикоррелированное состояние, когда у Алиса будет 0, Боб будет иметь 1. По взаимному согласию Алиса и Боб могли различать наши состояния, но только если их квантовая природа была фундаментально сложной», — говорит ученый.

Удивительное положение комплексных чисел в физике связано с тем, что их можно использовать для описания всех видов колебаний. Делать это с ними удобнее, чем с использованием популярных тригонометрических функций. Именно поэтому вычисления производятся с использованием комплексных чисел, а затем в конце учитываются только действительные числа в них.

Для теоретического описания был использован подход, известный как теория квантовых ресурсов. Сам эксперимент с локальной дискриминацией запутанных двухфотонных состояний был проведен в лаборатории в Хэфэе с использованием методов линейной оптики. Квантовые состояния, подготовленные исследователями, оказались различимыми, что доказывает, что комплексные числа являются неотъемлемой, неизгладимой частью квантовой механики.

Достижения польско-китайско-канадской группы исследователей имеют фундаментальное значение. Они настолько глубоки, что могут быть использованы в новых квантовых технологиях. В частности, исследование роли комплексных чисел в квантовой механике поможет лучше понять источники эффективности квантовых компьютеров и новых вычислительных машин, способных решать некоторые задачи со скоростью, недостижимой для классических устройств.

#QPNews Взято отсюда
329 viewsArtem Gogol, 14:25
Открыть/Комментировать
2021-04-20 19:56:55
495 viewsArtem Gogol, 16:56
Открыть/Комментировать
2021-04-20 19:56:53 Квантовая коррекция ошибок научилась переваривать вдвое больший шум

Физики разработали код коррекции ошибок в квантовых вычислениях, который работает при вдвое большем уровне шума, чем его предшественник. Авторы показали, как ведет себя новый код при разных типах ошибок и как с его помощью можно уменьшить число физических кубитов в системе, а эксперименты подтвердили все его преимущества. Работа опубликована в журнале Nature communications.

Второй важной задачей на пути к воплощению квантовых вычислений помимо создания долгожданного устройства, можно считать разработку кода коррекции ошибок. Базовые элементы квантовых компьютеров (кубиты, вентили) не идеальны: кубиты могут находиться в неправильном состоянии, а вентили — вносить ошибку в выходной кубит. Поэтому ученым приходится придумывать способы как с этим бороться. Известный из классической информатики вариант — коррекция возникающих ошибок. Тут есть несколько разных способов — можно несколько раз измерять полученную информацию и потом обрабатывать полученный набор, либо использовать для кодирования 1 кубита (логического) несколько физических кубитов. Для современных квантовых устройств время жизни кубитов не позволяет использовать первый метод, поэтому для реализации вычислений без ошибок требуется большее число кубитов, чем задействовано в самих вычислениях. Использование нескольких (часто трех) кубитов вместо одного позволяет получить правильный ответ, даже если один из кубитов оказался «битым», ведь остальные будут верными. Вероятность того, что два кубита одновременно ошибочны, очень мала.

Авторы подчеркивают, что наиболее важный результат их работы состоит не в преимуществе над поверхностными кодами, а в том, что они смогли показать, что модификации в существующих кодах коррекции ошибок могут дать результат лучше, чем предсказывает теория. А, значит, можно создавать и придумывать коды ошибок, которые существенно упростят работу квантовых устройств.

Поверхностные коды активно использует Google в своих сверхпроводящих устройствах на несколько десятков кубитов, которые не менее активно пытается масштабировать. Поэтому интересно будет увидеть, какие коды коррекции придут на смену существующим в больших квантовых вычислителях.

#QPNews Взято отсюда
480 viewsArtem Gogol, 16:56
Открыть/Комментировать
2021-04-16 21:57:56
522 viewsArtem Gogol, 18:57
Открыть/Комментировать